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GENERALIZED CAUCHY-JENSEN (m,n)-ADDITIVE
MAPPINGS IN RANDOM NORMED SPACES

JOHN MICHAEL RASSIAS AND HARK-MAHN Kimt

ABSTRACT. In the paper we consider a general Cauchy—Jensen (m,n)-
additive functional equation and establish new theorems about the
generalized Hyers—Ulam stability of the approximate Cauchy—Jensen
(m, n)-additive mappings in random normed spaces.

1. Introduction

One of the interesting questions in the theory of functional analysis
concerning the stability problem of functional equations is as follows:
when is it true that a mapping satisfying approximately a functional
equation must be close to an exact solution of the given functional equa-
tion? The first stability problem was raised by S.M. Ulam [25] during his
talk at the University of Wisconsin in 1940 as follows: Let G be a group
and G’ a metric group with metric p(-,-). Given £ > 0, does there exist
a 0 > 0 such that if f: G — G’ satisfies p(f(zy), f(x)f(y)) < § for all
x,y € G, then a homomorphism h : G — G’ exists with p(f(z), h(z)) < e
for all z € G. For very general functional equations, the concept of
stability for functional equations arises when we replace the functional
equation by an inequality which acts as a perturbation of the equa-
tion. Thus the stability question of functional equations is that how
do the solutions of the inequality differ from those of the given func-
tional equation? In the next year 1941, D.H. Hyers [13] was the first
one who presented affirmatively the result concerning the stability of
functional equations for approximately linear mappings f : £ — E’
between Banach spaces. A generalized version of the Hyers theorem
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for approximate additive mappings which allows the Cauchy difference
to be unbounded was given by T. Aoki [3] and D.G. Bourgin [5]. In
1978, Th.M. Rassias [22] provided a generalization of Hyers’ theorem
by proving the existence of unique linear mappings near approximate
linear mappings. P. Gavruta [11] obtained generalized result of Th.M.
Rassias’ theorem which allow the Cauchy difference to be controlled by a
general function. The stability problems of several functional equations
have been extensively investigated by a number of authors and there
are many interesting results concerning this problem [10, 14, 23]. These
stability results can be applied in stochastic analysis [16], financial and
actuarial mathematics [9], as well as in psychology and sociology [1, 2].

Before taking up the subject, we recall that a function F' : R — [0, 1]
is called a distribution function if it is nondecreasing and left continuous
with sup;cg F(t) = 1 and infer F(t) = 0. The class of all distribution
functions F' with F'(0) = 0 is denoted by D,. For any a > 0, ¢, is the
element of D, defined by

calt) = 0, if t<a,
), if t> a.

Then the maximal element for Dy partially ordered by the usual order-
ing of functions is the distribution function €. Throughout this paper,
we shall use the terminology, notations and conventions of theory of
probabilistic metric spaces and random normed spaces [7, 12, 17, 24].
The following definition can be found in the reference [12, 24].

DerFINITION 1.1. Let X be a real linear spaces, F' : X — D, be
a mapping denoted by F, for x € X and T be a t-norm. The triple
(X,F,T) is called a random normed space (briefly, RN-space) if the
following conditions are satisfied:

e (RN1) F, =g iff x = 0, the null vector;

o (RN2) F,.(t) = Ff(kiT) for all « € R, and = € X;

. (RN3) Fery(tl + t2) = T(Fx(tl),Fz(tQ)) for all z,y € X and

t1,t2 > 0.

Here T : [0,1] x [0,1] — [0, 1] is a continuous binary operation that
is associative, commutative, nondecreasing and has 1 as identity. The
three typical t-norms are Prod(a,b) := ab, W(a,b) := max{a+b— 1,0}
and Ty (a,b) := min{a, b}.

A sequence {x,} in an RN-space (X, F,T) converges to x € X if
limy, 00 Fy,,—2(t) = 1,¥t > 0. We remark that if a sequence {z,} con-
verges to x in an RN-space (X, F,T), then lim,, o Fy, (t) = Fy(t) [24].
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A sequence {z,} in an RN-space (X, F,T) is called a Cauchy sequence
if limp, p—soo Firpp—a,n (t) = 1,Vt > 0. The RN-space (X, F,T') is said to
be complete if every Cauchy sequence in X is convergent. During the
last two decades, the stability problems of various functional equations
in random normed spaces have been investigated by a number of mathe-
maticians and there are several applicable interesting results concerning
these stability problems; see [6, 8, 15, 21] and references therein.

Now, we consider a mapping f : X — Y between linear spaces satis-
fying the following functional equation

(1.1) > f (ZL:% + i %)
=1

1<u<--<ip<n
1§kl(§£l],VJ€{1, 7m})§n

_ m+1< >foz

forall 1, ,z, € X, where n,m € N are fixed integers withn > 2,1 <
m < n. Recently, the authors [19, 18, 20] have investigated approximate
Cauchy—Jensen (m, n)-additive mappings in quasi-#-normed spaces, and
in C*-algebras, respectively, associated with stability theorems of the
equation (1.1). In the sequel, we establish investigate the generalized
Hyers—Ulam stability problem for the general Cauchy—Jensen (m,n)-
additive functional equation (1.1) with n > 2 in random normed spaces
in the present paper.

2. Approximate Cauchy—Jensen (m,n)-additive mappings

Let L:=n—m+1 > 1 be a fixed positive integer with n > 2 and
let 1 < m < n otherwise specific reference. For notational convenience,
given a mapping f : X — Y, we define the difference operator Df :
X™ =Y of the equation (1.1) by

Df(xlax%"' 7:[;”)

Zm: T n—m

= Z f<]ﬂ’1 ]+Z$kl
1<i1 < <im<n =1

< k(EinVie (L m}) <n

S () e
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for all n-variables z1,---,z, € X,(n > 2) which acts as a perturba-
tion of the equation (1.1). Throughout this section, we assume that
X is a real linear space, (Y, F,Ty; = min) is a complete RN-space and
(Z,F',T}; = min) is an RN-space. Now we are going to investigate the
modified Hyers—Ulam stability of the functional equation (1.1).

LEMMA 2.1. [4] Let (X, F,Ty = min) be a RN-space. Define E f :
X — [0,00) by

E\p(z) =inf{t > 0: Fy(t) > 1 - A}
for each A € (0,1) and = € X. Then we have
Eyp(ry—2n) <Y Exp(ziog — ;)
=2
for all xi,...,xz, € X. Further, a sequence {x,} converges to z in
(X, F,Ty = min) if and only if Ey p(x, — x) — 0, and the sequence

{xn} is a Cauchy if and only if Ex p(zn, — m) — 0.

THEOREM 2.2. Assume that a mapping f : X — Y satisfies the
inequality

(21) FDf(:vl,acz,m ,:vn)(t) > Fé)(wl, 7zn)(t)

and ¢ : X™ — Z is a mapping for which there is a constant [ € R
satisfying 0 < |l| < L such that

(22) ;(L1‘17--~7L1‘n)(t) > F},@(Il,"'axn)(t)

for all n-variables x1,--- ,x, € X, and t > 0. Then we can find a
unique Cauchy—Jensen (m,n)-additive mapping A : X — Y satisfying
the equation (1.1) and the approximate inequality

E)\’FI((,O(Z', e ,IE))
(L=l

n
Fglo(x,,a:) <<m) (L - W)t> , > 0

(2.3) Exr(f(z) —A(z)) <

AV

e,  Fya)—A@(t)

for all x € X.
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Proof. We observe from (2.2) that
E)\,F/(SO(LQZ‘I; e ,an)) = mf{t > 0: F;(Lx1,~~~,L1’n)(t) > 1-— )\}

< inf{t>0: Fl/<p(x1,~~,mn)(t) >1—-A}
. t
= mf{|l|t >0: F, ., () >1=7}
= |”E/\,F’(90(5017'“ 7$n))
for all ¢, -+, 2, € X, t >0, and A € (0,1). It follows from (2.1) that
Exp(Df(z1,-++,2p)) = If{t >0: Fpyay o a,)(t) > 1= A}
(2.5) < mf{t>0:F, 1) >1-7}

Exrr(p(r1,- - 5 2n))

for all 1, ,z, € X, and t > 0. Now, substituting x for x1,--- ,x, in
the functional inequality (2.5), we obtain

Bae ((2)ft2a) = (1) 2s@)

2o o B (M52 @) < Bl )

IN
S
>
E
5
8
&

for all z € X. Therefore it follows from (2.4), (2.6) with L'z in place of
x, and Lemma 2.1 that

P (10 ALY S (1 )

LS Lk+s — Lt Lit+l
k+s—1 1 ' ]
S Z WE)\,F’(SO(LZ:’U"" ,Lzﬂf))
= ()
k+s—1 ‘”,L
(2.7) < Z WEA,F'(SO($, e, T))
= ()

k+s—1
Exp(o(z, -, 2)) i (W)z‘
e =
m 1=S8
for all z € X and any integers £ > 0,s > 0. Thus it follows by taking
k
the limit s — oo in (2.7) that a sequence {%} is Cauchy in the
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complete space (Y, F,Tys) and so it converges in Y. Therefore we see
that a mapping A : X — Y defined by

o fWFx) o f((n = m+ DFa)
Alw) '_klggo Lk _k1~>oo (n—m+1)k

is well defined for all z € X. This means that

. f(LFrz) _ : _
kIEE‘OEA’F< o A =0 e kILHSOF—ﬂj’;”—A(x)(t)_l’

lim F t)=F t
= ki{go f(§:z)( ) A(z)( )

for all t > 0. In addition it is clear from (2.5) that the following inequality

Df(LFxy, -, LFx LFgy, -+ LFx
E)\,F < f( 1Lk n)> S E)\,F/ <S0( 1 Lk n)>

IA
&
>
T
A~
N‘E
o
S}
B
B
2
~__

holds for all x1,--- ,z, € X. Therefore we obtain

hm FDf(Lkml,m,LkIn) (t) = hm FDA('Z‘177'Z"VL)(t) = 1, \V/t > 0

k—o0 Lk

which implies DA(x1, -+ ,2,) = 0 by (RN1). Hence the mapping A is
Cauchy—Jensen (m,n)-additive.
Now, taking the limit £ — oo in (2.7) with s = 0, we see that

Exp(f(x) — Az))
ko ko
<o (10 - L52) 4 r (152 - a0
1
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that is,

inf{t >0: Ff(:c)—A(x) (t) >1-— )\}

< mEom
= inf{t>0:F, . <(Z> (L — m)t) >1-Ab,

which yields

n
Fiay-a@(t) = Fg. x><<m>(L—l!)t>, t>0

for all z € X. Thus we find that A is a Cauchy additive mapping satis-
fying the inequality (2.3) near the approximate mapping f: X — Y.

To prove the afore-mentioned uniqueness, we assume now that there
is another Cauchy-Jensen (m,n)-additive mapping A’ : X — Y which
satisfies the inequality (2.3). Then one establishes by the last equality
and (2.3) that

FA(x)—A'(z)(t) = lggoFfukm) A/(ka)(t)
>  lim F’

Lk Lk
e ()i )
2 Jim Pl ((Z) i)
> Jim F’@,.,@((;y - 2gt)

= 1, t>0,

because Fé,(m,... € D, and sup,cp Fg;(a:,~--7ac)(t) = 1. Therefore one

)

obtains A(x) — A'(z) = 0 for all z € X, which completes the proof. [

THEOREM 2.3. Assume that a mapping f : X — Y satisfies the
inequality (2.1) and ¢ is a mapping for which there is a constant [ € R
satisfying |l| > L such that

for all n-variables x1,--- ,x, € X, and t > 0. Then there exists exactly

a Cauchy—Jensen (m,n)-additive mapping A : X — Y satisfying the
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equation (1.1) and the inequality

Exp(p(z,- -, 7))
() (7 = L)

Fota I)<<m (i = L ) t>0

Proof. 1t follows from (2.8) and (2.5) that

Exr(f(z) = A(z)) <

Y

i.e.,  Fra)—a@(t)

for all x € X.

E\ pr (s@(%,-" »%)) < G Exr(p(z1, - zp)),
@9 B (10 -LAD) S myBare )

for all z € X. Therefore it follows from (2.9) with L~z in place of z,
and Lemma 2.1 that

E\r (Lsf (—

i ) Lk—i—s f(

=)
k+s—1

< Y Bar (L)~ L% (7))

i=s

k+s—1 I " .
Z mEA’F/(SO(Li+1 T i+l ))
m

i=s

IN

k+s—1

< Z (n)I’/lZ’i_HE/\,F’(QP(xa”' ;7))

i=s

_ Exp(p(w,---,x)) R L
R TR )

for all x € X and any integers k£ > 0,s > 0.
The remaining assertion goes through by the similar way to corre-
sponding part of Theorem 2.2. O
We obtain the following corollary concerning the stability for ap-
proximate Cauchy—Jensen (m,n)-additive mappings of which difference
operator Df : X™ — Y is uniformly bounded by a constant.

COROLLARY 2.4. Assume that a mapping f : X — Y satisfies the
inequality

FDf(xlvaF“ axn)(t) Z FE/(t)
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for all n-variables x1,--- ,x, € X, and for some constant € > 0. Then
there exists a unique Cauchy—Jensen (m,n)-additive mapping A : X —
Y satisfying the equation

DA(zy, 22, ,2n) =0
and the inequality

Eyrp(f(z) — Alx)) < m

\Y%
ol
N
VR
3 3
N———
£
|
5
~
N———
o~
V
(@)

i€,  Fya)—a@(t)
for all z € X.

We remark that if ¢ = 0, then Fppa, 4y, ) (t) = FZ(t) = 1, and so
Df(z1,x2,--+ ,xn) = 0. Thus we get f = A because E)\ p/(0) = 0.

Now, in the next theorem we are to consider a singular case m = n of
Theorem 2.2 and Theorem 2.3 concerning the stability of the equation

(1.1).

THEOREM 2.5. Assume that a mapping f : X — Y with f(0) =0
satisfies the inequality (2.1) and ¢ is a mapping for which there is a
constant | € R satistying 0 < |l| < n such that

/ /
Fga(nwl,--- ,nzn)(t) > ‘Fl<p(x1,--- ) (t)

for all n-variables x1,--- ,x, € X, and t > 0. Then we can find a
unique Cauchy—Jensen (m,n)-additive mapping A : X — Y satisfying
the equation (1.1) and the inequality
j—th
P
E)\,F’(SD(OfU , X 70 70))
(/1] =1/n)

1 1
F! = =)t), t>0
90(07"'7 xr ,90"'?0) ((’” n) > ) >

j—th

Exr(f(z) — A(z))

v

ie, Fray-a@(t)

for allz € X and all j € {1,--- ,n}.

Proof. For each j = 1,--- ,n, substituting = for z; and 0 for all z;
with ¢ # 7 in the functional inequality (2.5), one obtains

j—th
Bar (12)- 110)) € Buplpl0. 750-,0)
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so in addition,

E\r (f(nsx) - f(nkﬁx)) < "”glE/\’F <f(nfx) _ f(n”lx))

) ns nk+s ni i+l
k+s—1 ;; j—th
1] +1 NG
< Z an E)\F/(SO(()? y &L 70 70))
i=s
Jj—th

=~
_ E)\’F’(QD(O,"‘ , T aO 30))
(1/[1] = 1/n)
for all x € X and any integers k > 0,s > 0.

The remaining assertion goes through by the similar way to corre-
sponding part of Theorem 2.2. O

THEOREM 2.6. Assume that a mapping f : X — Y with f(0) =0
satisfies the inequality (2.1) and ¢ is a mapping for which there is a
constant | € R satisfying |l| > n such that

Flies sy ()2 Fligy o (10

1, o)

for all n-variables x1,--- ,x, € X, and t > 0. Then there exists a
unique Cauchy—Jensen (m,n)-additive mapping A : X — Y satisfying
the equation (1.1) and the inequality

j—th

=~
E)\,F’((P(Oa"'a € 070))

(1/n —1/[1])

ie, F t) > F ((1 1)t> t>0

T f($)—A(CC) - @(07"'7 X 7070) n T ’
~~ ]

for allz € X and all j € {1,--- ,n}.

Exr(f(z) — A(z)) <

Proof. The proof goes through by the similar way to corresponding
part of Theorem 2.5. U
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