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GENERALIZED CAUCHY–JENSEN (m,n)-ADDITIVE

MAPPINGS IN RANDOM NORMED SPACES

John Michael Rassias and Hark-Mahn Kim†

Abstract. In the paper we consider a general Cauchy–Jensen (m,n)-
additive functional equation and establish new theorems about the
generalized Hyers–Ulam stability of the approximate Cauchy–Jensen
(m,n)-additive mappings in random normed spaces.

1. Introduction

One of the interesting questions in the theory of functional analysis
concerning the stability problem of functional equations is as follows:
when is it true that a mapping satisfying approximately a functional
equation must be close to an exact solution of the given functional equa-
tion? The first stability problem was raised by S.M. Ulam [25] during his
talk at the University of Wisconsin in 1940 as follows: Let G be a group
and G′ a metric group with metric ρ(·, ·). Given ε > 0, does there exist
a δ > 0 such that if f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ for all
x, y ∈ G, then a homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε
for all x ∈ G. For very general functional equations, the concept of
stability for functional equations arises when we replace the functional
equation by an inequality which acts as a perturbation of the equa-
tion. Thus the stability question of functional equations is that how
do the solutions of the inequality differ from those of the given func-
tional equation? In the next year 1941, D.H. Hyers [13] was the first
one who presented affirmatively the result concerning the stability of
functional equations for approximately linear mappings f : E → E′

between Banach spaces. A generalized version of the Hyers theorem
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for approximate additive mappings which allows the Cauchy difference
to be unbounded was given by T. Aoki [3] and D.G. Bourgin [5]. In
1978, Th.M. Rassias [22] provided a generalization of Hyers’ theorem
by proving the existence of unique linear mappings near approximate
linear mappings. P. Gǎvruta [11] obtained generalized result of Th.M.
Rassias’ theorem which allow the Cauchy difference to be controlled by a
general function. The stability problems of several functional equations
have been extensively investigated by a number of authors and there
are many interesting results concerning this problem [10, 14, 23]. These
stability results can be applied in stochastic analysis [16], financial and
actuarial mathematics [9], as well as in psychology and sociology [1, 2].

Before taking up the subject, we recall that a function F : R → [0, 1]
is called a distribution function if it is nondecreasing and left continuous
with supt∈R F (t) = 1 and inft∈R F (t) = 0. The class of all distribution
functions F with F (0) = 0 is denoted by D+. For any a ≥ 0, εa is the
element of D+ defined by

εa(t) =

{
0, if t ≤ a,

1, if t > a.

Then the maximal element for D+ partially ordered by the usual order-
ing of functions is the distribution function ε0. Throughout this paper,
we shall use the terminology, notations and conventions of theory of
probabilistic metric spaces and random normed spaces [7, 12, 17, 24].
The following definition can be found in the reference [12, 24].

Definition 1.1. Let X be a real linear spaces, F : X → D+ be
a mapping denoted by Fx for x ∈ X and T be a t-norm. The triple
(X,F, T ) is called a random normed space (briefly, RN-space) if the
following conditions are satisfied:

• (RN1) Fx = ε0 iff x = 0, the null vector;
• (RN2) Fαx(t) = Fx(

t
|α|) for all α ∈ R, and x ∈ X;

• (RN3) Fx+y(t1 + t2) = T (Fx(t1), Fx(t2)) for all x, y ∈ X and
t1, t2 > 0.

Here T : [0, 1] × [0, 1] → [0, 1] is a continuous binary operation that
is associative, commutative, nondecreasing and has 1 as identity. The
three typical t-norms are Prod(a, b) := ab, W (a, b) := max{a+ b− 1, 0}
and TM (a, b) := min{a, b}.

A sequence {xn} in an RN-space (X,F, T ) converges to x ∈ X if
limn→∞ Fxn−x(t) = 1, ∀t > 0. We remark that if a sequence {xn} con-
verges to x in an RN-space (X,F, T ), then limn→∞ Fxn(t) = Fx(t) [24].
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A sequence {xn} in an RN-space (X,F, T ) is called a Cauchy sequence
if limm,n→∞ Fxn−xm(t) = 1, ∀t > 0. The RN-space (X,F, T ) is said to
be complete if every Cauchy sequence in X is convergent. During the
last two decades, the stability problems of various functional equations
in random normed spaces have been investigated by a number of mathe-
maticians and there are several applicable interesting results concerning
these stability problems; see [6, 8, 15, 21] and references therein.

Now, we consider a mapping f : X → Y between linear spaces satis-
fying the following functional equation∑

1 ≤ i1 < · · · < im ≤ n
1 ≤ kl(̸= ij ,∀j ∈ {1, · · · ,m}) ≤ n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
(1.1)

=
n−m+ 1

n

(
n

m

) n∑
i=1

f(xi)

for all x1, · · · , xn ∈ X, where n,m ∈ N are fixed integers with n ≥ 2, 1 ≤
m ≤ n. Recently, the authors [19, 18, 20] have investigated approximate
Cauchy–Jensen (m,n)-additive mappings in quasi-β-normed spaces, and
in C∗-algebras, respectively, associated with stability theorems of the
equation (1.1). In the sequel, we establish investigate the generalized
Hyers–Ulam stability problem for the general Cauchy–Jensen (m,n)-
additive functional equation (1.1) with n ≥ 2 in random normed spaces
in the present paper.

2. Approximate Cauchy–Jensen (m,n)-additive mappings

Let L := n − m + 1 > 1 be a fixed positive integer with n ≥ 2 and
let 1 ≤ m < n otherwise specific reference. For notational convenience,
given a mapping f : X → Y , we define the difference operator Df :
Xn → Y of the equation (1.1) by

Df(x1, x2, · · · , xn)

:=
∑

1 ≤ i1 < · · · < im ≤ n
1 ≤ kl(̸= ij ,∀j ∈ {1, · · · ,m}) ≤ n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)

−n−m+ 1

n

(
n

m

) n∑
i=1

f(xi)



134 J.M. Rassias and H.-M. Kim

for all n-variables x1, · · · , xn ∈ X, (n ≥ 2) which acts as a perturba-
tion of the equation (1.1). Throughout this section, we assume that
X is a real linear space, (Y, F, TM = min) is a complete RN-space and
(Z,F ′, T ′

M = min) is an RN-space. Now we are going to investigate the
modified Hyers–Ulam stability of the functional equation (1.1).

Lemma 2.1. [4] Let (X,F, TM = min) be a RN-space. Define Eλ,F :
X → [0,∞) by

Eλ,F (x) = inf{t > 0 : Fx(t) > 1− λ}

for each λ ∈ (0, 1) and x ∈ X. Then we have

Eλ,F (x1 − xn) ≤
n∑

i=2

Eλ,F (xi−1 − xi)

for all x1, . . . , xn ∈ X. Further, a sequence {xn} converges to x in
(X,F, TM = min) if and only if Eλ,F (xn − x) → 0, and the sequence
{xn} is a Cauchy if and only if Eλ,F (xn − xm) → 0.

Theorem 2.2. Assume that a mapping f : X → Y satisfies the
inequality

FDf(x1,x2,··· ,xn)(t) ≥ F ′
φ(x1,··· ,xn)

(t)(2.1)

and φ : Xn → Z is a mapping for which there is a constant l ∈ R
satisfying 0 < |l| < L such that

F ′
φ(Lx1,··· ,Lxn)

(t) ≥ F ′
lφ(x1,··· ,xn)

(t)(2.2)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then we can find a
unique Cauchy–Jensen (m,n)-additive mapping A : X → Y satisfying
the equation (1.1) and the approximate inequality

Eλ,F (f(x)−A(x)) ≤
Eλ,F ′(φ(x, · · · , x))(

n
m

)
(L− |l|)

,(2.3)

i.e., Ff(x)−A(x)(t) ≥ F ′
φ(x,··· ,x)

((
n

m

)
(L− |l|)t

)
, t > 0

for all x ∈ X.
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Proof. We observe from (2.2) that

Eλ,F ′(φ(Lx1, · · · , Lxn)) = inf{t > 0 : F ′
φ(Lx1,··· ,Lxn)

(t) > 1− λ}
≤ inf{t > 0 : F ′

lφ(x1,··· ,xn)
(t) > 1− λ}

= inf{t > 0 : F ′
φ(x1,··· ,xn)

(
t

|l|
) > 1− λ}(2.4)

= inf{|l|t > 0 : F ′
φ(x1,··· ,xn)

(t) > 1− λ}
= |l|Eλ,F ′(φ(x1, · · · , xn))

for all x1, · · · , xn ∈ X, t > 0, and λ ∈ (0, 1). It follows from (2.1) that

Eλ,F (Df(x1, · · · , xn)) = inf{t > 0 : FDf(x1,··· ,xn)(t) > 1− λ}
≤ inf{t > 0 : F ′

φ(x1,··· ,xn)
(t) > 1− λ}(2.5)

= Eλ,F ′(φ(x1, · · · , xn))

for all x1, · · · , xn ∈ X, and t > 0. Now, substituting x for x1, · · · , xn in
the functional inequality (2.5), we obtain

Eλ,F

((
n

m

)
f(Lx)−

(
n

m

)
Lf(x)

)
≤ Eλ,F ′(φ(x, · · · , x)),

or, Eλ,F

(
f(Lx)

L
− f(x)

)
≤ 1(

n
m

)
L
Eλ,F ′(φ(x, · · · , x))(2.6)

for all x ∈ X. Therefore it follows from (2.4), (2.6) with Lix in place of
x, and Lemma 2.1 that

Eλ,F

(
f(Lsx)

Ls
− f(Lk+sx)

Lk+s

)
≤

k+s−1∑
i=s

Eλ,F

(
f(Lix)

Li
− f(Li+1x)

Li+1

)

≤
k+s−1∑
i=s

1(
n
m

)
Li+1

Eλ,F ′(φ(Lix, · · · , Lix))

≤
k+s−1∑
i=s

|l|i(
n
m

)
Li+1

Eλ,F ′(φ(x, · · · , x))(2.7)

=
Eλ,F ′(φ(x, · · · , x))(

n
m

)
L

k+s−1∑
i=s

(
|l|
L
)i

for all x ∈ X and any integers k > 0, s ≥ 0. Thus it follows by taking

the limit s → ∞ in (2.7) that a sequence
{

f(Lkx)
Lk

}
is Cauchy in the
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complete space (Y, F, TM ) and so it converges in Y . Therefore we see
that a mapping A : X → Y defined by

A(x) := lim
k→∞

f(Lkx)

Lk
= lim

k→∞

f((n−m+ 1)kx)

(n−m+ 1)k

is well defined for all x ∈ X. This means that

lim
k→∞

Eλ,F

(
f(Lkx)

Lk
−A(x)

)
= 0, ⇔ lim

k→∞
F f(Lkx)

Lk −A(x)
(t) = 1,

⇔ lim
k→∞

F f(Lkx)

Lk

(t) = FA(x)(t)

for all t > 0. In addition it is clear from (2.5) that the following inequality

Eλ,F

(
Df(Lkx1, · · · , Lkxn)

Lk

)
≤ Eλ,F ′

(
φ(Lkx1, · · · , Lkxn)

Lk

)
≤ Eλ,F ′

(
|l|k

Lk
φ(x1, · · · , xn)

)
≤ |l|k

Lk
Eλ,F ′ (φ(x1, · · · , xn))

→ as k → ∞

holds for all x1, · · · , xn ∈ X. Therefore we obtain

lim
k→∞

FDf(Lkx1,··· ,Lkxn)

Lk

(t) = lim
k→∞

FDA(x1,··· ,xn)(t) = 1, ∀t > 0

which implies DA(x1, · · · , xn) = 0 by (RN1). Hence the mapping A is
Cauchy–Jensen (m,n)-additive.

Now, taking the limit k → ∞ in (2.7) with s = 0, we see that

Eλ,F (f(x)−A(x))

≤ Eλ,F

(
f(x)− f(Lkx)

Lk

)
+ Eλ,F

(
f(Lkx)

Lk
−A(x)

)
≤

Eλ,F ′(φ(x, · · · , x))(
n
m

)
L

k−1∑
i=0

(
|l|
L
)i + Eλ,F

(
f(Lkx)

Lk
−A(x)

)
≤ 1(

n
m

)
(L− |l|)

Eλ,F ′(φ(x, · · · , x)),
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that is,

inf{t > 0 : Ff(x)−A(x)(t) > 1− λ}

≤ 1(
n
m

)
(L− |l|)

inf{t > 0 : F ′
φ(x,··· ,x)(t) > 1− λ}

= inf{t > 0 : F ′
φ(x,··· ,x)

((
n

m

)
(L− |l|)t

)
> 1− λ},

which yields

Ff(x)−A(x)(t) ≥ F ′
φ(x,··· ,x)

((
n

m

)
(L− |l|)t

)
, t > 0

for all x ∈ X. Thus we find that A is a Cauchy additive mapping satis-
fying the inequality (2.3) near the approximate mapping f : X → Y .

To prove the afore-mentioned uniqueness, we assume now that there
is another Cauchy–Jensen (m,n)-additive mapping A′ : X → Y which
satisfies the inequality (2.3). Then one establishes by the last equality
and (2.3) that

FA(x)−A′(x)(t) = lim
k→∞

F f(Lkx)

Lk −A′(Lkx)

Lk

(t)

≥ lim
k→∞

F ′
φ(Lkx,··· ,Lkx)

((
n

m

)
(L− |l|)Lkt

)
≥ lim

k→∞
F ′
|l|kφ(x,··· ,x)

((
n

m

)
(L− |l|)Lkt

)
≥ lim

k→∞
F ′
φ(x,··· ,x)

((
n

m

)
(L− |l|) L

k

|l|k
t

)
= 1, t > 0,

because F ′
φ(x,··· ,x) ∈ D+, and supt∈R F ′

φ(x,··· ,x)(t) = 1. Therefore one

obtains A(x)−A′(x) = 0 for all x ∈ X, which completes the proof. □

Theorem 2.3. Assume that a mapping f : X → Y satisfies the
inequality (2.1) and φ is a mapping for which there is a constant l ∈ R
satisfying |l| > L such that

F ′
φ(

x1
L
,··· ,xn

L
)
(t) ≥ F ′

φ(x1,··· ,xn)
(|l|t)(2.8)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then there exists exactly
a Cauchy–Jensen (m,n)-additive mapping A : X → Y satisfying the
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equation (1.1) and the inequality

Eλ,F (f(x)−A(x)) ≤
Eλ,F ′(φ(x, · · · , x))(

n
m

)
(|l| − L)

i.e., Ff(x)−A(x)(t) ≥ F ′
φ(x,··· ,x)

((
n

m

)
(|l| − L)t

)
, t > 0

for all x ∈ X.

Proof. It follows from (2.8) and (2.5) that

Eλ,F ′

(
φ(

x1
L
, · · · , xn

L
)
)

≤ 1

|l|
Eλ,F ′(φ(x1, · · · , xn)),

Eλ,F

(
f(x)− Lf(

x

L
)
)

≤ 1(
n
m

)Eλ,F ′(φ(
x

L
, · · · , x

L
))(2.9)

for all x ∈ X. Therefore it follows from (2.9) with L−ix in place of x,
and Lemma 2.1 that

Eλ,F

(
Lsf(

x

Ls
)− Lk+sf(

x

Lk+s
)
)

≤
k+s−1∑
i=s

Eλ,F

(
Lif(

x

Li
)− Li+1f(

x

Li+1
)
)

≤
k+s−1∑
i=s

Li(
n
m

)Eλ,F ′(φ(
x

Li+1
, · · · , x

Li+1
))

≤
k+s−1∑
i=s

Li(
n
m

)
|l|i+1

Eλ,F ′(φ(x, · · · , x))

=
Eλ,F ′(φ(x, · · · , x))(

n
m

)
|l|

k+s−1∑
i=s

(
L

|l|
)i

for all x ∈ X and any integers k > 0, s ≥ 0.
The remaining assertion goes through by the similar way to corre-

sponding part of Theorem 2.2. □
We obtain the following corollary concerning the stability for ap-

proximate Cauchy–Jensen (m,n)-additive mappings of which difference
operator Df : Xn → Y is uniformly bounded by a constant.

Corollary 2.4. Assume that a mapping f : X → Y satisfies the
inequality

FDf(x1,x2,··· ,xn)(t) ≥ F ′
ε(t)
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for all n-variables x1, · · · , xn ∈ X, and for some constant ε ≥ 0. Then
there exists a unique Cauchy–Jensen (m,n)-additive mapping A : X →
Y satisfying the equation

DA(x1, x2, · · · , xn) = 0

and the inequality

Eλ,F (f(x)−A(x)) ≤
Eλ,F ′(ε)(
n
m

)
(n−m)

i.e., Ff(x)−A(x)(t) ≥ F ′
ε

((
n

m

)
(n−m)t

)
, t > 0

for all x ∈ X.

We remark that if ε = 0, then FDf(x1,x2,··· ,xn)(t) ≥ F ′
ε(t) = 1, and so

Df(x1, x2, · · · , xn) = 0. Thus we get f = A because Eλ,F ′(0) = 0.
Now, in the next theorem we are to consider a singular case m = n of

Theorem 2.2 and Theorem 2.3 concerning the stability of the equation
(1.1).

Theorem 2.5. Assume that a mapping f : X → Y with f(0) = 0
satisfies the inequality (2.1) and φ is a mapping for which there is a
constant l ∈ R satisfying 0 < |l| < n such that

F ′
φ(nx1,··· ,nxn)

(t) ≥ F ′
lφ(x1,··· ,xn)

(t)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then we can find a
unique Cauchy–Jensen (m,n)-additive mapping A : X → Y satisfying
the equation (1.1) and the inequality

Eλ,F (f(x)−A(x)) ≤
Eλ,F ′(φ(0, · · · ,

j−th︷︸︸︷
x , 0 · · · , 0))

(1/|l| − 1/n)

i.e., Ff(x)−A(x)(t) ≥ F ′
φ(0,··· , x︸︷︷︸

j−th

,0··· ,0)

(
(
1

|l|
− 1

n
)t

)
, t > 0

for all x ∈ X and all j ∈ {1, · · · , n}.

Proof. For each j = 1, · · · , n, substituting x for xj and 0 for all xi
with i ̸= j in the functional inequality (2.5), one obtains

Eλ,F

(
f(

x

n
)− 1

n
f(x)

)
≤ Eλ,F ′(φ(0, · · · ,

j−th︷︸︸︷
x , 0 · · · , 0)),
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so in addition,

Eλ,F

(
f(nsx)

ns
− f(nk+sx)

nk+s

)
≤

k+s−1∑
i=s

Eλ,F

(
f(nix)

ni
− f(ni+1x)

ni+1

)

≤
k+s−1∑
i=s

|l|i+1

ni
Eλ,F ′(φ(0, · · · ,

j−th︷︸︸︷
x , 0 · · · , 0))

=
Eλ,F ′(φ(0, · · · ,

j−th︷︸︸︷
x , 0 · · · , 0))

(1/|l| − 1/n)

for all x ∈ X and any integers k > 0, s ≥ 0.
The remaining assertion goes through by the similar way to corre-

sponding part of Theorem 2.2. □

Theorem 2.6. Assume that a mapping f : X → Y with f(0) = 0
satisfies the inequality (2.1) and φ is a mapping for which there is a
constant l ∈ R satisfying |l| > n such that

F ′
φ(

x1
n
,··· ,xn

n
)
(t) ≥ F ′

φ(x1,··· ,xn)
(|l|t)

for all n-variables x1, · · · , xn ∈ X, and t > 0. Then there exists a
unique Cauchy–Jensen (m,n)-additive mapping A : X → Y satisfying
the equation (1.1) and the inequality

Eλ,F (f(x)−A(x)) ≤
Eλ,F ′(φ(0, · · · ,

j−th︷︸︸︷
x , 0 · · · , 0))

(1/n− 1/|l|)

i.e., Ff(x)−A(x)(t) ≥ F ′
φ(0,··· , x︸︷︷︸

j−th

,0··· ,0)

(
(
1

n
− 1

|l|
)t

)
, t > 0

for all x ∈ X and all j ∈ {1, · · · , n}.

Proof. The proof goes through by the similar way to corresponding
part of Theorem 2.5. □
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[11] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias Stability of approxi-
mately additive mappings, J. Math. Anal. Appl., 184(1994), 431–436.
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